# Calorimeter for JLC Experiment

# Hiroyuki Matsunaga University of Tsukuba

#### **CONTENTS**

- 1) Required Performance
- 2) Basic Parameters
- 3) Proof of Performance
  - [A] Beam Tests
    - a) Energy Resolution
    - b) Linearity
    - c) Tower Boundary
    - d) e/π Separation
  - [B] Simulation

- 4) Other R&Ds
  - a) Scintillator-strip EMCAL
  - b) Direct-readout Scintillator-strip SHmax
  - c) Photon Detectors
  - d) Lead Alloy
- 5) Summary

JLC-CAL group is a collaboration of KEK, Kobe, Konan, Niigata, Shinshu, and Tsukuba Design Criteria in a de-coupled CAL parameter space

2-jet mass resolution better than  $\Gamma_z$ ,  $\Gamma_w$ 

- Hardware Compensation for excellent hadron energy Resolution and Linearity
- Fine Granularity for precise topological reconstruction

No software compensation No extremely-fine granularity

### **Technology Choice**

### **Tile/Fiber Sampling Calorimeter**

- Crackless Hermeticity
- Low Cost
- Design Flexibility
- Well-established technology



Reconstructed W mass for e+e- -> W+W- at  $\sqrt{S}$ =400GeV

Result of quick-simulation. SHmax is not used for analysis.

Thus contribution of track-cluster association error is as

large as ~1.9GeV. Better result expected with SHmax analysis.

| magnetic-field option | 2T-case                                                       | 3T-case                          |  |
|-----------------------|---------------------------------------------------------------|----------------------------------|--|
| Inner Radius          | 250cm                                                         | 160cm                            |  |
| Outer Radius          | 400cm                                                         | 340cm                            |  |
| Angular Coverage      | $ \cos\theta  < 0.985$                                        | lcosθ  < 0.966 (Full)            |  |
|                       | $ \cos\theta  < 0.994$                                        | $ \cos\theta  < 0.991$ (Partial) |  |
| SHmax scheme          | Scintillator-Strip Array option=Si-pad (1cm-wide) (1cm x 1cm) |                                  |  |
|                       |                                                               |                                  |  |
| EMC                   | $\sigma_{\rm E}/E = 15\%/\sqrt{E} + 1\%$                      |                                  |  |
| transverse            | 6cm x 6cm                                                     | 4cm x 4cm                        |  |
|                       | <b>(24mrad)</b>                                               | (24mrad)                         |  |
| longitudinal          | 3 sections (6+12+20 layers)                                   |                                  |  |
| HCAL                  | $\sigma_{\rm E}/E = 40\%/\sqrt{E} + 2\%$                      |                                  |  |
| transverse            | 18cm x 18cm                                                   | 12cm x 12cm                      |  |
|                       | ( <b>72mrad</b> )                                             | ( <b>72mrad</b> )                |  |
| longitudinal          | 4 sections (25+30+35+40 layers)                               |                                  |  |
| Thickness             |                                                               |                                  |  |
| PreSH                 | 4Xo (4mm x 6 layers)                                          |                                  |  |
| <b>EMC</b>            | 23Xo (4mm x 22 layers)                                        |                                  |  |
| HCAL                  | 6.5λο (8mm x 130 layers)                                      |                                  |  |
|                       |                                                               |                                  |  |



Configuration of Baseline Barrel Calorimeter

### [A] Energy Resolution & Linearity

- Related to Material Choice and Global Design
- Must be verified by **Beam Test**

### [B] Granularity

- Related to Component Design
- Must be verified by Full Simulation

..... Easy to tune at any stage in the case of Tile/Fiber scheme

### Strategy;

- 1st Establish energy resolution & linearity with tile/fiber test module DONE
- 2nd Optimize granularity by full simulation with tile/fiber structure implemented In Progress

### [A] Beam tests done at KEK (1-4GeV) and at FNAL (10-200GeV) to prove; sm05

- a) **Energy Resolution** / Gaussian Response / Hardware Compensation
- b) Linearity / Dynamic Range
- c) Tower Boundary Uniformity
- d)  $e/\pi$  Separation Capability

Schematic View of



### a) Energy Resolution



# $\pi$ ; $\sigma_E/E = 46.7 \pm 0.6\%/\sqrt{E} + 0.9 \pm 0.9\%$

worse than design due to 'fiber-routing' acryl plate

•••• Should be OK but needs verification.

Effect of acryl plate (measured by beam tests)

- No effect on compensation if placed downstream of scintillator
- No effect on EM energy resolution regardless its location
- Deteriorate hadron energy resolution regardless its location

Energy resolution of tile/fiber hadron calorimeter test module.

#### Beam test result of acryl plate effect (4GeV)

| Position of Acryl | EM resolution | $\pi$ resolution | e/π ratio |
|-------------------|---------------|------------------|-----------|
| No acryl plates   | 12.0±0.5 %    | 20.5±0.4 %       | 1.03±0.02 |
| Upstream of Sci   | 11.6±0.5 %    | 22.7±0.4 %       | 1.07±0.02 |
| Downstream of Sci | 12.0±0.5 %    | 22.8±0.4 %       | 1.01±0.02 |



Energy resolution of HCAL test module w/o acryl plates.



### Good Linearity thanks to Hardware Compensation.

(better than 1% from 2 GeV to 150 GeV)

### c) Tower Boundary Response



- No significant anomaly was observed at the tower boundary for pions.
- Slight anomaly was observed for electrons.
   EM module must be designed with more uniform response.

## d) e/π separation and PreSH/SHmax





Combined performance of

- PreSH
- SHmax (Scint-Strip)
- HCAL

measured with test beam.

- pion rejection  $\sim 1/1400$
- with **&e** ~ 98%

# **Quite Satisfactory**

 position resolution 2~3mm due to noise/cross talk
 Needs improvements



### Optimization with a full simulator based on GEANT3

- Tuning of calorimeter response in progress
- Hadron-clustering algorithm under development
- Cluster-track association algorithm under development

Implementation of
 hadron shower generator
 with realistic fluctuation
 Still working hard to
 make 'Un-Correlated'
 distribution function.

Yet a lot to do before reconstruction of physics processes for optimization.



Un-correlated fluctuation for EM

Correlated fluctuation for hadrons

# a) Scintillator-strip EMCAL

- much finer-granularity
- reasonable cost by casting/extrusion of strips
- non-uniformity over a strip  $\sim 4.8\%$ similar to traditional square tiles ( $\sim 4.6\%$ )
- requires super multi-channel photo-detectors
- crossed-strip layout need study
   ghost-rejection capability by full simulation
- energy decomposition algorithm be studied for multi-hit in a cell.



## b) Direct-readout Scintillator-strip SHmax

- Attach high-gain APD directly at the end of scintillator-strip ... eliminate WLS cost
- Punch-through be rejected by blind-Si behind.

..... under study.

- EMC/HCAL
  - multi-channel HPD/HAPD: promising (however cost-down needed)
- Scintillator-Strip EMC/SHmax need
  - super-multichannel photo-detector.
    - 61ch-HPD; tests in progress
    - EBCCD; tests in progress. Higher gain needed.

Optical Fibers from SHmax



Principle of EBCCD



Gain vs photo-cathode voltage for proximity-focused EBCCD

Hardware Compensation ... Lead as passive/structural material

==> Lead alloy with high rigidity and tensile strength needed.

Tentative target = strength of copper

|              | Tensile Strength (yield) | Young<br>Modulus |  |
|--------------|--------------------------|------------------|--|
| Copper       | 64MPa                    | 110GPa           |  |
| Pure Lead    | 7MPa                     | 14GPa            |  |
| Lead Alloy-1 | 50MPa                    | 14GPa            |  |
| -В           | 42MPa                    | 21GPa            |  |
|              | (preliminary)            |                  |  |



- Other samples being tested.
- Creep test to be done soon.

Weight vs Elongation for Several Lead Alloys

5) Summary sm13

### Baseline design of JLC calorimeter

- high performance expected; hermeticity, resolution, linearity
- with well-established technology; tile/fiber scheme
- with reasonable cost; casting enables further cost reduction
- design flexibility; completely decoupled resolution & granularity by hardware compensation scheme

## Proof of Principle --- Finished.

However verification with full simulation is severely behind schedule.